Dear Parent and Student,

This summer packet is meant for students to practice the skills needed to be successful in Honors Geometry.

-Students are expected to attempt all the problems and attempt them without a calculator. This packet will **NOT** count as a grade, however, there will be a quiz given in September, so this packet will be very helpful. Any questions please contact Mrs. Kelly through Classroom posted below or Mrs. Puitz by email listed below.

-Detailed solutions and explanations to the summer packet will be posted on the Clearview website in August and also for 8th graders on classroom "Summer 2021 Honors Geometry".

8th GRADERS only Sign up for Summer 2021 Honors GEOMETRY Classroom code xmdvppa

Highschool students <u>Tpuitz@clearviewregional.edu</u>

Enjoy the summer!

-Clearview Regional School District Mathematics Department

A. MULTIPLYING POLYNOMIALS

1]
$$(x^3 + 3)(x - 7)$$
 2] $(x - 4)(x^2 + 3x - 5)$

3]
$$(5x-6)(-x+\frac{1}{2})$$
 4] $(\sqrt{2}+x)(\sqrt{8}-x)$

B. FACTOR EACH OF THE EXPRESSIONS

5] $y^2 - 12y + 20$ 6] $z^2 - z - 6$

7] $4ax^2 + 16ax + 16a$ 8] $2x^2 + 17x + 21$

9] $6x^2 - 11x - 10$ 10] $k^2 - 64w^2$

C. RATIONALIZE EACH RADICAL EXPRESSION

11]
$$\frac{3\sqrt{3}}{\sqrt{2}}$$
 12] $\frac{1}{\sqrt{5}}$

13]
$$\frac{12}{3\sqrt{2}}$$
 14] $\frac{xy}{\sqrt{x}}$

D. SOLVE EACH SYSTEM OF EQUATIONS USING SUBSTITUTION.

15]
$$\begin{cases} 2x + y = 4 \\ 3x + y = 1 \end{cases}$$
 16] $\begin{cases} y = 3x - 27 \\ y = \frac{1}{2}x - 7 \end{cases}$

E. SOLVE EACH SYSTEM OF EQUATIONS USING ELIMINATION

17]
$$\begin{cases} 3k + 5g = -12\\ 2k - 3g = -8 \end{cases}$$
 18]
$$\begin{cases} 2k - g = 8\\ 6k - 3g = -9 \end{cases}$$

F. SIMPLIFY EACH RADICAL EXPRESSION

 19] $\sqrt{124}$ 20] $\sqrt{215}$

21] $\sqrt{20x^2}$

22] $\sqrt{12} \cdot \sqrt{48}$

23] $\sqrt{32} + \sqrt{54} - \sqrt{98}$

G. EVALUATE EACH OF THE EXPRESSIONS <u>WITHOUT</u> THE USE OF A CALCULATOR

24] 45 - [3(5 - 3)]25] $(9^2 + 4 \cdot 9 \div 4 - 6) \div 3$ 26] What does $2x^2 + 3x - 4$ equal 27] -21 - (-0.8) when x = -3?29] $\frac{15}{16} - \frac{7}{20}$ 28] - 0.8 - (-1.1)31] $(1\frac{1}{5})(4\frac{1}{2})$ 30] 13 - (-2)32] (7.3)(-12.1) 33] -21.07 ÷ (-4.3) 34] $(5\frac{1}{3}) \div (3\frac{1}{5})$ 35] $\frac{3}{10} + \frac{1}{4}$ 36] $\frac{10}{33} \cdot \frac{9}{50}$ **37**] 0.35 × 0.3

H. SOLVE EACH LINEAR EQUATION BELOW FOR 'X'

38]
$$3(2x-5) - 1 = -2(x+4)$$
 39] $\frac{4x+2}{3} = 5x - 1$

$$42] \frac{3}{2}x - 3 = \frac{3}{4}$$

I. EVALUATE EACH EXPRESSION WITHOUT A CALCULATOR. LEAVE ALL FINAL ANSWERS IN *SIMPLEST* FORM.

$$43]\frac{2}{3} + \frac{3}{4} + \frac{5}{6} \qquad \qquad 44]\frac{2x}{3} + \frac{3x}{8}$$

$$45]\left(\frac{4}{3} \times 9\right) \div \left(\frac{3}{4} \times \frac{8}{9}\right) \qquad \qquad 46]\left(\frac{mt}{p}\right)\left(\frac{pt}{m}\right)$$

J. USE THE DISTANCE AND MIDPOINT FORMULAS TO ANSWER THE FOLLOWING QUESTIONS

A rectangle has vertices located at A(13,1) B(3,1) C(3,15) and D(13,15) Graph the rectangle on the grid provided.

47] What is the length of the rectangle from A to B? from B to C?

48] What is the length of a diagonal from A to C?

49] What are the coordinates of the midpoint between A and C?

50] What is the slope of . . .

- Line AB?
- Line BC?
- A line perpendicular to diagonal \overline{AC} ?

K. GRAPH EACH LINEAR EQUATION ON THE COORDINATE PLANES **PROVIDED.**

x

 \mathbf{x}

x

52] 2x + 5y = 10

53]
$$\frac{x}{4} - \frac{y}{3} = 2$$

L. WRITE THE EQUATION OF THE LINE FROM THE GIVEN INFORMATION.

54] Write an equation in <u>slope-intercept</u> form of the line that passes through (2,5) and has slope = -3.

55] Write an equation in <u>slope-intercept</u> form of the line passing through (0,1) and is perpendicular to the line 2x + 4 = y.

56] Write an equation in <u>slope-intercept</u> form of the line passing through (4,6) and is parallel to the line $y = \frac{2}{3}x + \frac{10}{3}$.

57] Write an equation in <u>slope-intercept</u> form of the line passing through (-9,5) and is perpendicular to the line y = -3x + 2.

M. FOR #58-60 DETERMINE IF THE PAIR OF LINES ARE PARALLEL, PERPENDICULAR, OR NEITHER.

58] y = 2x + 5
y = -2x + 459] 2y + 3x = 5
3y = 2x - 7

60] x = 3y + 2 $y = \frac{1}{3}x - 3$

N. FOR EACH PROBLEM BELOW, THE SLOPE OF A LINE IS GIVEN. DETEMINE THE SLOPE OF THE PERPENDICULAR LINE.

61] m = 3/5 62] m = -6

63] m = -1/11 64] m = $-\sqrt{2}$

SOME HINTS: These are just a few hints, please utilize online resources for help if necessary.

A) MULTIPLYING POLYNOMIALS BY THE *FOIL* METHOD:

$$20x^{2} + 5x - 12x - 3$$

F O I L
$$20x^{2} - 7x - 3$$

B) FACTORING

C) RATIONALIZE THE DENOMINATOR

1) Multiply the "top" and bottom by the square root in the denominator.

Simplify the numerator if necessary. The denominator will become the square root of a perfect square.

Reduce the fraction if necessary.

J) DISTANCE AND MIDPOINT FORMULA

K) GRAPHING LINEAR EQUATIONS

Slope-Intercept Form

L) WRITE AN EQUATION OF A LINE

Find the equation of a line Through (1,10)	
and Perpendicular to 2x-y=2	
2x-y=2L, y=mx+b	$y = \frac{-1}{2}x + b$ (1,10)
$ \underbrace{ \begin{array}{c} 2x-y=2 \\ y=2x-2 \end{array}}_{y=2x-2} L_1 \underbrace{ \begin{array}{c} y=mx+b \\ y=\frac{-1}{2}x+b \end{array}}_{2} L_2 $	$10=\frac{-1}{2}(1)+b$
L_1 Slope • L_2 Slope = -1	$b = \frac{21}{2}$
2 • L ₂ Slope = -1	$\frac{2}{-1}$
L_2 Slope = $\frac{-1}{2}$	$y = \frac{1}{2}x + \frac{1}{2}$